Reactions of allylic radicals that impact molecular weight growth kinetics.

نویسندگان

  • Kun Wang
  • Stephanie M Villano
  • Anthony M Dean
چکیده

The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals.

The intramolecular ring closure reactions of unsaturated hydrocarbon radicals potentially play an important role for the formation of molecular weight growth species, especially during the pyrolysis and oxidation of alkenes under low to intermediate temperatures. In this work we investigated a series of intramolecular cycloaddition reactions of both allylic- and alkyl-type dienyl radicals. In t...

متن کامل

Modeling of Reversible Chain Transfer Catalyzed Polymerization by Moment Equations Method

A moment equations method was performed to study the Reversible chain Transfer Catalyzed Polymerization (RTCP) of styrene in 80°C. To do this, a kinetic scheme containing conventional free radical polymerization reactions and equilibrium reactions of RTCP was assumed. After obtaining mass balance equations, three moment equations were defined for free and dormant radicals and dead chains. M...

متن کامل

Isomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules.

The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified a...

متن کامل

Effects of Plasma Discharge Parameters on the Nano-Particles Formation in the PECVD Reactor

In this paper, the effects of plasma discharge parameters on the nano particles formation process in a plasma enhanced chemical vapor deposition (PECVD) reactor using a model based on equations of ionization kinetics for different active species are studied. A radio frequency applied electric field causes ionization inside the reactor and consequently different reaction schemically active speci...

متن کامل

Predictive Control of Average Composition and Molecular Weight Distributions in Semibatch Free Radical Copolymerization Reactions

Control of copolymer composition and molecular weight distributions is important, since they partially govern material performance. This work uses a simple but robust approach to approximate predictive control of average composition and molecular weight during free radical copolymerization, based on detailed kinetics obtained by ACOMP (automatic continuous online monitoring of polymerization re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2015